465 research outputs found

    On calibrated representations of the degenerate affine periplectic Brauer algebra

    Get PDF
    We initiate the representation theory of the degenerate affine periplectic Brauer algebra on nn strands by constructing its finite-dimensional calibrated representations when n=2n=2. We show that any such representation that is indecomposable and does not factor through a representation of the degenerate affine Hecke algebra occurs as an extension of two semisimple representations with one-dimensional composition factors; and furthermore, we classify such representations with regular eigenvalues up to isomorphism

    Generalized iterated wreath products of symmetric groups and generalized rooted trees correspondence

    Full text link
    Consider the generalized iterated wreath product Sr1SrkS_{r_1}\wr \ldots \wr S_{r_k} of symmetric groups. We give a complete description of the traversal for the generalized iterated wreath product. We also prove an existence of a bijection between the equivalence classes of ordinary irreducible representations of the generalized iterated wreath product and orbits of labels on certain rooted trees. We find a recursion for the number of these labels and the degrees of irreducible representations of the generalized iterated wreath product. Finally, we give rough upper bound estimates for fast Fourier transforms.Comment: 18 pages, to appear in Advances in the Mathematical Sciences. arXiv admin note: text overlap with arXiv:1409.060

    Genetic Variants of the Renin Angiotensin System: Effects on Atherosclerosis in Experimental Models and Humans

    Get PDF
    The renin angiotensin system (RAS) has profound effects on atherosclerosis development in animal models, which is partially complimented by evidence in the human disease. Although angiotensin II was considered to be the principal effector of the RAS, a broader array of bioactive angiotensin peptides have been identified that have increased the scope of enzymes and receptors in the RAS. Genetic interruption of the synthesis of these peptides has not been extensively performed in experimental or human studies. A few studies demonstrate that interruption of a component of the angiotensin peptide synthesis pathway reduces experimental lesion formation. The evidence in human studies has not been consistent. Conversely, genetic manipulation of the RAS receptors has demonstrated that AT1a receptors are profoundly involved in experimental atherosclerosis. Few studies have reported links of genetic variants of angiotensin II receptors to human atherosclerotic diseases. Further genetic studies are needed to define the role of RAS in atherosclerosis

    On particle acceleration and very high energy gamma-ray emission in Crab-like pulsars

    Full text link
    The origin of very energetic charged particles and the production of very high-energy (VHE) gamma-ray emission remains still a challenging issue in modern pulsar physics. By applying a toy model, we explore the acceleration of co-rotating charged particles close to the light surface in a plasma-rich pulsar magnetosphere and study their interactions with magnetic and photon fields under conditions appropriate for Crab-type pulsars. Centrifugal acceleration of particles in a monopol-like magnetic field geometry is analyzed and the efficiency constraints, imposed by corotation, inverse Compton interactions and curvature radiation reaction are determined. We derive expressions for the maximum particle energy and provide estimates for the corresponding high-energy curvature and inverse Compton power outputs. It is shown that for Crab-like pulsars, electron Lorentz factor up to γ107\gamma \sim 10^7 can be achieved, allowing inverse Compton (Klein-Nishina) up-scattering of thermal photons to TeV energies with a maximum luminosity output of 1031\sim10^{31} erg/s. Curvature radiation, on the other hand, will result in a strong GeV emission output of up to (10341035)\sim(10^{34}-10^{35}) erg/s, quasi-exponentially decreasing towards higher energies for photon energies below 50\sim 50 GeV. Accordingly to the results presented only young pulsars are expected to be sites of detectable VHE γ\gamma-ray emission.Comment: 6 pages, 1 figur

    Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation

    Full text link
    The subpulse modulation of pulsar radio emission goes to prove that the plasma flow in the open field line tube breaks into isolated narrow streams. I propose a model which attributes formation of streams to the process of the electric current adjustment in the magnetosphere. A mismatch between the magnetospheric current distribution and the current injected by the polar cap accelerator gives rise to reverse plasma flows in the magnetosphere. The reverse flow shields the electric field in the polar gap and thus shuts up the plasma production process. I assume that a circulating system of streams is formed such that the upward streams are produced in narrow gaps separated by downward streams. The electric drift is small in this model because the potential drop in narrow gaps is small. The gaps have to drift because by the time a downward stream reaches the star surface and shields the electric field, the corresponding gap has to shift. The transverse size of the streams is determined by the condition that the potential drop in the gaps is sufficient for the pair production. This yields the radius of the stream roughly 10% of the polar cap radius, which makes it possible to fit in the observed morphological features such as the "carousel" with 10-20 subbeams and the system of the core - two nested cone beams.Comment: 8 pages, 1 figur

    Beetle (Coleoptera: Scirtidae) Facilitation of Larval Mosquito Growth in Tree Hole Habitats is Linked to Multitrophic Microbial Interactions

    Get PDF
    Container-breeding mosquitoes, such as Aedes triseriatus, ingest biofilms and filter water column microorganisms directly to obtain the bulk of their nutrition. Scirtid beetles often co-occur with A. triseriatus and may facilitate the production of mosquito adults under low-resource conditions. Using molecular genetic techniques and quantitative assays, we observed changes in the dynamics and composition of bacterial and fungal communities present on leaf detritus and in the water column when scirtid beetles co-occur with A. triseriatus. Data from terminal restriction fragment polymorphism analysis indicated scirtid presence alters the structure of fungal communities in the water column but not leaf-associated fungal communities. Similar changes in leaf and water bacterial communities occurred in response to mosquito presence. In addition, we observed increased processing of leaf detritus, higher leaf-associated enzyme activity, higher bacterial productivity, and higher leaf-associated fungal biomass when scirtid beetles were present. Such shifts suggest beetle feeding facilitates mosquito production indirectly through the microbial community rather than directly through an increase in available fine particulate organic matter

    Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas

    Get PDF
    Low energy non linear QED effects in vacuum have been predicted since 1936 and have been subject of research for many decades. Two main schemes have been proposed for such a 'first' detection: measurements of ellipticity acquired by a linearly polarized beam of light passing through a magnetic field and direct light-light scattering. The study of the propagation of light through an external field can also be used to probe for new physics such as the existence of axion-like particles and millicharged particles. Their existence in nature would cause the index of refraction of vacuum to be different from unity in the presence of an external field and dependent of the polarization direction of the light propagating. The major achievement of reaching the project sensitivities in gravitational wave interferometers such as LIGO an VIRGO has opened the possibility of using such instruments for the detection of QED corrections in electrodynamics and for probing new physics at very low energies. In this paper we discuss the difference between direct birefringence measurements and index of refraction measurements. We propose an almost parasitic implementation of an external magnetic field along the arms of the VIRGO interferometer and discuss the advantage of this choice in comparison to a previously proposed configuration based on shorter prototype interferometers which we believe is inadequate. Considering the design sensitivity in the strain, for the near future VIRGO+ interferometer, of h<210231Hzh<2\cdot10^{-23} \frac{1}{\sqrt{\rm Hz}} in the range 40 Hz 400- 400 Hz leads to a variable dipole magnet configuration at a frequency above 20 Hz such that B2D13000B^{2}D \ge 13000 T2^{2}m/Hz\sqrt{\rm Hz} for a `first' vacuum non linear QED detection

    Activated Magnetospheres of Magnetars

    Full text link
    Like the solar corona, the external magnetic field of magnetars is twisted by surface motions of the star. The twist energy is dissipated over time. We discuss the theory of this activity and its observational status. (1) Theory predicts that the magnetosphere tends to untwist in a peculiar way: a bundle of electric currents (the "j-bundle") is formed with a sharp boundary, which shrinks toward the magnetic dipole axis. Recent observations of shrinking hot spots on magnetars are consistent with this behavior. (2) Continual discharge fills the j-bundle with electron-positron plasma, maintaining a nonthermal corona around the neutron star. The corona outside a few stellar radii strongly interacts with the stellar radiation and forms a "radiatively locked" outflow with a high e+- multiplicity. The locked plasma annihilates near the apexes of the closed magnetic field lines. (3) New radiative-transfer simulations suggest a simple mechanism that shapes the observed X-ray spectrum from 0.1 keV to 1 MeV: part of the thermal X-rays emitted by the neutron star are reflected from the outer corona and then upscattered by the inner relativistic outflow in the j-bundle, producing a beam of hard X-rays.Comment: 23 pages, 7 figures; review chapter in the proceedings of ICREA Workshop on the High-Energy Emission from Pulsars and Their Systems, Sant Cugat, Spain, April 201

    Deletion Hotspots in AMACR Promoter CpG Island Are cis-Regulatory Elements Controlling the Gene Expression in the Colon

    Get PDF
    Alpha-methylacyl-coenzyme A racemase (AMACR) regulates peroxisomal β-oxidation of phytol-derived, branched-chain fatty acids from red meat and dairy products — suspected risk factors for colon carcinoma (CCa). AMACR was first found overexpressed in prostate cancer but not in benign glands and is now an established diagnostic marker for prostate cancer. Aberrant expression of AMACR was recently reported in Cca; however, little is known about how this gene is abnormally activated in cancer. By using a panel of immunostained-laser-capture-microdissected clinical samples comprising the entire colon adenoma–carcinoma sequence, we show that deregulation of AMACR during colon carcinogenesis involves two nonrandom events, resulting in the mutually exclusive existence of double-deletion at CG3 and CG10 and deletion of CG12-16 in a newly identified CpG island within the core promoter of AMACR. The double-deletion at CG3 and CG10 was found to be a somatic lesion. It existed in histologically normal colonic glands and tubular adenomas with low AMACR expression and was absent in villous adenomas and all CCas expressing variable levels of AMACR. In contrast, deletion of CG12-16 was shown to be a constitutional allele with a frequency of 43% in a general population. Its prevalence reached 89% in moderately differentiated CCas strongly expressing AMACR but only existed at 14% in poorly differentiated CCas expressing little or no AMACR. The DNA sequences housing these deletions were found to be putative cis-regulatory elements for Sp1 at CG3 and CG10, and ZNF202 at CG12-16. Chromatin immunoprecipitation, siRNA knockdown, gel shift assay, ectopic expression, and promoter analyses supported the regulation by Sp1 and ZNF202 of AMACR gene expression in an opposite manner. Our findings identified key in vivo events and novel transcription factors responsible for AMACR regulation in CCas and suggested these AMACR deletions may have diagnostic/prognostic value for colon carcinogenesis

    Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation

    Get PDF
    Calculations of reaction rates for the third-order QED process of photon splitting in strong magnetic fields traditionally have employed either the effective Lagrangian method or variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of such a formulation include the ability to compute rates near pair resonances above pair threshold. This paper presents new developments of the Landau representation formalism as applied to photon splitting, providing significant advances beyond the work of Mentzel et al. by summing over the spin quantum numbers of the electron propagators, and analytically integrating over the component of momentum of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications. Such developments can facilitate numerical computations of splitting considerably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the limit of highly supercritical fields and the domain where photon energies are far inferior to that for the threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives. In addition, the equivalence of the asymptotic forms in these two domains to extant results from effective Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.
    corecore